8 research outputs found

    Plasmonic-Organic and Silicon-Organic Hybrid Modulators for High-Speed Signal Processing

    Get PDF
    High-speed electro-optic (EO) modulators are key devices for optical communications, microwave photonics, and for broadband signal processing. Among the different material platforms for high-density photonic integrated circuits (PIC), silicon photonics sticks out because of CMOS foundries specialized in PIC fabrication. However, the absence of the Pockels effect in silicon renders EO modulators with high-efficiency and large modulation bandwidth difficult. In this dissertation, plasmonic and photonic slot waveguide modulators are investigated. The devices are built on the silicon platform and are combined with highly-efficient organic EO materials. Using such a hybrid platform, we realize compact and fast plasmonic-organic hybrid (POH) and silicon-organic hybrid (SOH) modulators. As an application example, we demonstrate for the first time an advanced terahertz communication link by directly converting data on a 360 GHz carrier to a data stream on an optical carrier. For optical transmitter applications, we overcome the bandwidth limitation of conventional SOH modulators by introducing a high-k dielectric microwave slotline for guiding the modulating radio-frequency signal which is capacitively-coupled to the EO modulating region. We confirm the viability of such capacitively-coupled SOH modulators by generating four-state pulse amplitude modulated signals with data rates up to 200 Gbit/s

    Wireless THz link with optoelectronic transmitter and receiver

    Get PDF
    Photonics might play a key role in future wireless communication systems that operate at terahertz (THz) carrier frequencies. A prime example is the generation of THz data streams by mixing optical signals in high-speed photodetectors. Over previous years, this concept has enabled a series of wireless transmission experiments at record-high data rates. Reception of THz signals in these experiments, however, still relied on electronic circuits. In this paper, we show that wireless THz receivers can also greatly benefit from optoelectronic signal processing techniques, in particular when carrier frequencies beyond 0.1 THz and wideband tunability over more than an octave is required. Our approach relies on a high-speed photoconductor and a photonic local oscillator for optoelectronic downconversion of THz data signals to an intermediate frequency band that is easily accessible by conventional microelectronics. By tuning the frequency of the photonic local oscillator, we can cover a wide range of carrier frequencies between 0.03 and 0.34 THz. We demonstrate line rates of up to 10 Gbit/s on a single channel and up to 30 Gbit/s on multiple channels transmitted over a distance of 58 m. To the best of our knowledge, our experiments represent the first demonstration of a THz communication link that exploits optoelectronic signal processing techniques both at the transmitter and the receiver

    Wireless THz link with optoelectronic transmitter and receiver

    Get PDF
    Photonics might play a key role in future wireless communication systems that operate at terahertz (THz) carrier frequencies. A prime example is the generation of THz data streams by mixing optical signals in high-speed photodetectors. Over previous years, this concept has enabled a series of wireless transmission experiments at record-high data rates. Reception of THz signals in these experiments, however, still relied on electronic circuits. In this paper, we show that wireless THz receivers can also greatly benefit from optoelectronic signal processing techniques, in particular when carrier frequencies beyond 0.1 THz and wideband tunability over more than an octave is required. Our approach relies on a high-speed photoconductor and a photonic local oscillator for optoelectronic downconversion of THz data signals to an intermediate frequency band that is easily accessible by conventional microelectronics. By tuning the frequency of the photonic local oscillator, we can cover a wide range of carrier frequencies between 0.03 and 0.34 THz. We demonstrate line rates of up to 10 Gbit/s on a single channel and up to 30 Gbit/s on multiple channels transmitted over a distance of 58 m. To the best of our knowledge, our experiments represent the first demonstration of a THz communication link that exploits optoelectronic signal processing techniques both at the transmitter and the receiver
    corecore